190 research outputs found

    Capacitor-type micrometeoroid detectors

    Get PDF
    The metal oxide semiconductor (MOS) capacitor micrometeroid detector consists of a thin dielectric capacitor fabricated on a silicon wafer. In operation, the device is charged to a voltage level sufficiently near breakdown that micrometeoroid impacts will cause dielectric deformation or heating and subsequent arc-over at the point of impact. Each detector is capable of recording multiple impacts because of the self-healing characteristics of the device. Support instrumentation requirements consist of a voltage source and pulse counters that monitor the pulse of recharging current following every impact. An investigation has been conducted in which 0.5 to 5 micron diameter carbonized iron spheres traveling at velocities of 4 to 10 Km/sec were impacted on to detectors with either a dielectric thickness of 0.4 or 1.0 micron. This study demonstrated that an ion microprobe tuned to sufficiently high resolution can detect Fe remaining on the detector after the impact. Furthermore, it is also possible to resolve Fe ion images free of mass interferences from Si, for example, giving its spatial distribution after impact. Specifically this technique has shown that significant amounts of impacting particles remain in the crater and near it which can be analyzed for isotopic content. Further testing and calibration could lead to quantitive analysis. This study has shown that the capacitor type micrometeroid detector is capable of not only time and flux measurements but can also be used for isotopic analysis

    Contaminant Interferences with SIMS Analyses of Microparticle Impactor Residues on LDEF Surfaces

    Get PDF
    Elemental analyses of impactor residues on high purity surface exposed to the low earth orbit (LEO) environment for 5.8 years on Long Duration Exposure Facility (LDEF) has revealed several probable sources for microparticles at this altitude, including natural micrometeorites and manmade debris ranging from paint pigments to bits of stainless steel. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences included pre-, post-, and in-flight deposited particulate surface contaminants, as well as indigenous heterogeneous material contaminants. Non-flight contaminants traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF and proximity to active electrical fields. In-flight deposited (low velocity) contaminants included urine droplets and bits of metal film from eroded thermal blankets

    Elemental analyses of hypervelocity microparticle impact sites on Interplanetary Dust Experiment sensor surfaces

    Get PDF
    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to break down the 0.4 or 1.0 micron thick SIO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle impact sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results were used to classify the particles' origins as 'manmade,' 'natural,' or 'indeterminate.' The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters of these features. Thus far a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF have been analyzed: 36 from tray C-9 (Leading (ram), or East, side), 18 from tray C-3 (Trailing (wake), or West, side), 12 from tray B-12 (North side), 4 from tray D-6 (South side), 3 from tray H-11 (Space end), and 6 from tray G-10 (Earth end). Residue from manmade debris was identified in craters on all trays. (Aluminum oxide particle residues were not detectable on the Al/Si substrates.) These results were consistent with the IDE impact record which showed highly variable long term microparticle impact flux rates on the West, Space and Earth sides of the LDEF which could not be ascribed to astronomical variability of micrometeorite density. The IDE record also showed episodic bursts of microparticle impacts on the East, North, and South sides of the satellite, denoting passage through orbital debris clouds or rings

    Parallel data-local training for optimizing Word2Vec embeddings for word and graph embeddings

    Get PDF
    The Word2Vec model is a neural network-based unsupervised word embedding technique widely used in applications such as natural language processing, bioinformatics and graph mining. As Word2Vec repeatedly performs Stochastic Gradient Descent (SGD) to minimize the objective function, it is very compute-intensive. However, existing methods for parallelizing Word2Vec are not optimized enough for data locality to achieve high performance. In this paper, we develop a parallel data-locality-enhanced Word2Vec algorithm based on Skip-gram with a novel negative sampling method that decouples loss calculation with positive and negative samples; this allows us to efficiently reformulate matrix-matrix operations for the negative samples over the sentence. Experimental results demonstrate our parallel implementations on multi-core CPUs and GPUs achieve significant performance improvement over the existing state-of-the-art parallel Word2Vec implementations while maintaining evaluation quality. We also show the utility of our Word2Vec implementation within the Node2Vec algorithm which accelerates embedding learning for large graphs

    OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence

    Get PDF
    Quantifying gross primary production (GPP) remains a major challenge in global carbon cycle research. Spaceborne monitoring of solar-induced chlorophyll fluorescence (SIF), an integrative photosynthetic signal of molecular origin, can assist in terrestrial GPP monitoring. However, the extent to which SIF tracks spatiotemporal variations in GPP remains unresolved. Orbiting Carbon Observatory-2 (OCO-2)’s SIF data acquisition and fine spatial resolution permit direct validation against ground and airborne observations. Empirical orthogonal function analysis shows consistent spatiotemporal correspondence between OCO-2 SIF and GPP globally. A linear SIF-GPP relationship is also obtained at eddy-flux sites covering diverse biomes, setting the stage for future investigations of the robustness of such a relationship across more biomes. Our findings support the central importance of high-quality satellite SIF for studying terrestrial carbon cycle dynamics

    Linking free text documentation of functioning and disability to the ICF with natural language processing

    Get PDF
    Background: Invaluable information on patient functioning and the complex interactions that define it is recorded in free text portions of the Electronic Health Record (EHR). Leveraging this information to improve clinical decision-making and conduct research requires natural language processing (NLP) technologies to identify and organize the information recorded in clinical documentation. Methods: We used natural language processing methods to analyze information about patient functioning recorded in two collections of clinical documents pertaining to claims for federal disability benefits from the U.S. Social Security Administration (SSA). We grounded our analysis in the International Classification of Functioning, Disability, and Health (ICF), and used the Activities and Participation domain of the ICF to classify information about functioning in three key areas: mobility, self-care, and domestic life. After annotating functional status information in our datasets through expert clinical review, we trained machine learning-based NLP models to automatically assign ICF categories to mentions of functional activity. Results: We found that rich and diverse information on patient functioning was documented in the free text records. Annotation of 289 documents for Mobility information yielded 2,455 mentions of Mobility activities and 3,176 specific actions corresponding to 13 ICF-based categories. Annotation of 329 documents for Self-Care and Domestic Life information yielded 3,990 activity mentions and 4,665 specific actions corresponding to 16 ICF-based categories. NLP systems for automated ICF coding achieved over 80% macro-averaged F-measure on both datasets, indicating strong performance across all ICF categories used. Conclusions: Natural language processing can help to navigate the tradeoff between flexible and expressive clinical documentation of functioning and standardizable data for comparability and learning. The ICF has practical limitations for classifying functional status information in clinical documentation but presents a valuable framework for organizing the information recorded in health records about patient functioning. This study advances the development of robust, ICF-based NLP technologies to analyze information on patient functioning and has significant implications for NLP-powered analysis of functional status information in disability benefits management, clinical care, and research

    A comprehensive study of mobility functioning information in clinical notes: Entity hierarchy, corpus annotation, and sequence labeling

    Get PDF
    Background Secondary use of Electronic Health Records (EHRs) has mostly focused on health conditions (diseases and drugs). Function is an important health indicator in addition to morbidity and mortality. Nevertheless, function has been overlooked in accessing patients’ health status. The World Health Organization (WHO)’s International Classification of Functioning, Disability and Health (ICF) is considered the international standard for describing and coding function and health states. We pioneer the first comprehensive analysis and identification of functioning concepts in the Mobility domain of the ICF. Results Using physical therapy notes at the National Institutes of Health’s Clinical Center, we induced a hierarchical order of mobility-related entities including 5 entities types, 3 relations, 8 attributes, and 33 attribute values. Two domain experts manually curated a gold standard corpus of 14,281 nested entity mentions from 400 clinical notes. Inter-annotator agreement (IAA) of exact matching averaged 92.3 % F1-score on mention text spans, and 96.6 % Cohen’s kappa on attributes assignments. A high-performance Ensemble machine learning model for named entity recognition (NER) was trained and evaluated using the gold standard corpus. Average F1-score on exact entity matching of our Ensemble method (84.90 %) outperformed popular NER methods: Conditional Random Field (80.4 %), Recurrent Neural Network (81.82 %), and Bidirectional Encoder Representations from Transformers (82.33 %). Conclusions The results of this study show that mobility functioning information can be reliably captured from clinical notes once adequate resources are provided for sequence labeling methods. We expect that functioning concepts in other domains of the ICF can be identified in similar fashion

    Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems

    Get PDF
    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE

    Broadening horizons: the case for capturing function and the role of health informatics in its use

    Get PDF
    Background Human activity and the interaction between health conditions and activity is a critical part of understanding the overall function of individuals. The World Health Organization’s International Classification of Functioning, Disability and Health (ICF) models function as all aspects of an individual’s interaction with the world, including organismal concepts such as individual body structures, functions, and pathologies, as well as the outcomes of the individual’s interaction with their environment, referred to as activity and participation. Function, particularly activity and participation outcomes, is an important indicator of health at both the level of an individual and the population level, as it is highly correlated with quality of life and a critical component of identifying resource needs. Since it reflects the cumulative impact of health conditions on individuals and is not disease specific, its use as a health indicator helps to address major barriers to holistic, patient-centered care that result from multiple, and often competing, disease specific interventions. While the need for better information on function has been widely endorsed, this has not translated into its routine incorporation into modern health systems. Purpose We present the importance of capturing information on activity as a core component of modern health systems and identify specific steps and analytic methods that can be used to make it more available to utilize in improving patient care. We identify challenges in the use of activity and participation information, such as a lack of consistent documentation and diversity of data specificity and representation across providers, health systems, and national surveys. We describe how activity and participation information can be more effectively captured, and how health informatics methodologies, including natural language processing (NLP), can enable automatically locating, extracting, and organizing this information on a large scale, supporting standardization and utilization with minimal additional provider burden. We examine the analytic requirements and potential challenges of capturing this information with informatics, and describe how data-driven techniques can combine with common standards and documentation practices to make activity and participation information standardized and accessible for improving patient care. Recommendations We recommend four specific actions to improve the capture and analysis of activity and participation information throughout the continuum of care: (1) make activity and participation annotation standards and datasets available to the broader research community; (2) define common research problems in automatically processing activity and participation information; (3) develop robust, machine-readable ontologies for function that describe the components of activity and participation information and their relationships; and (4) establish standards for how and when to document activity and participation status during clinical encounters. We further provide specific short-term goals to make significant progress in each of these areas within a reasonable time frame
    • …
    corecore